

Chemical Engineering Journal 136 (2008) 126-132

Chemical Engineering Journal

www.elsevier.com/locate/cej

Direct oxidation of H_2 to H_2O_2 over Pd/CeO₂ catalyst under ambient conditions: Influence of halide ions

Chanchal Samanta*, Vasant R. Choudhary

Chemical Engineering and Process Development Division, National Chemical Laboratory, Pune 411008, India Received 24 June 2006; received in revised form 7 February 2007; accepted 7 March 2007

Abstract

Direct oxidation of H₂ by O₂ to H₂O₂ and decomposition/hydrogenation of H₂O₂ have been investigated over Pd/CeO₂ catalyst in presence of different halide ions. All reactions were carried out in an aqueous acidic (0.03 M H₃PO₄) medium at room temperature (25 °C) and atmospheric pressure. When different halide ions were added directly to the reaction medium or incorporated in the catalyst, the activity/selectivity of Pd/CeO₂ catalyst in the H₂ to H₂O₂ oxidation changed significantly, depending upon the nature of the halide ions. Different ammonium halides impregnated reduced Pd/CeO₂ catalyst calcined under inert (flowing nitrogen) and oxidizing (static/flowing air) gaseous atmospheres revealed that bulk oxidation state of Pd and the nature of the halide ions incorporated into the catalyst cooperatively control the activity/selectivity of catalyst in H₂ to H₂O₂ decomposition and hydrogenation were found to affect strongly depending upon the nature of the halide ions present in the reaction medium or in the catalyst. Among the different halides, bromide was found the most effective promoter for enhancing the H₂O₂ yield/selectivity in H₂ to H₂O₂ oxidation, irrespective of the Pd oxidation state in the catalyst.

Keywords: H₂ to H₂O₂ oxidation; Pd/CeO₂ catalyst; H₂O₂ decomposition; H₂O₂ hydrogenation; Br⁻ ions

1. Introduction

Demand for hydrogen peroxide (H_2O_2) as an environmentally friendly oxidizing agent in chemical synthesis and also for wastewater treatment is increasing continuously. The liquidphase direct synthesis of H_2O_2 from H_2 and O_2 has been indentified as an attractive alternative to anthraquinone process, which currently, is the main commercial process accounts for >90% worldwide production of H_2O_2 [1]. Although, anthraquinone process has the advantage of avoiding direct mixing of H_2 and O_2 , the process suffers from several limitations/drawbacks, such as use of costly complex solvent system to keep both reactant and product in the solution, loss of quinone due to non-selective hydrogenation, and several separation and concentration steps. The production cost of H_2O_2 is, therefore, high for this process and it is economically feasible only on a large-scale production (>20,000 tonnes per annum). The direct

E-mail addresses: chanchal_ncl@yahoo.com,

synthesis is expected to provide a highly cost-effective process for the production of H2O2 as an intermediate for chemical synthesis. The direct H2O2 synthesis form its elements has attracted considerable attention in recent years in academic laboratories with Pd-based catalysts [2-16]. In the Pd catalyzed H₂/O₂ reaction, both selective H_2O_2 ($H_2 + O_2 \rightarrow H_2O_2$) and non-selective water $(H_2 + 0.5O_2 \rightarrow H_2O)$ forming reactions occur simultaneously. Furthermore, the low stability of H₂O₂ molecules in presence of Pd facilitates it conversion to water in consecutive reaction. It is, therefore, extremely difficult to achieve high H2O2 selectivity/yields. Also, Pd catalyzed H₂/O₂ reaction could be explosive when operated within the flammability limits. The flammability and detonability limits for H₂ in O₂ (at 25 °C and 1 atm pressure) are 4.0% H_2 (lower) to 94% H_2 (upper) and 15% H₂ (lower) to 90% H₂ (upper), respectively. Hence, using high H₂ concentration to obtain elevated H₂O₂ yield would make the direct H₂O₂ synthesis more hazardous. Because of these two serious problems, the direct H₂ to H₂O₂ oxidation is often considered as a "dream reaction". The challenges posed by the direct H₂O₂ process, therefore, make it an interesting candidate for studying from a scientific viewpoint.

In the past several years, much interest has grown in the use of ceria (CeO_2) as a precious metal catalyst support, where ceria

^{*} Corresponding author. Present address: Institute of Chemical Technology, University of Stuttgart, 70550 Stuttgart, Germany.

 $chanchal.samanta@itc.uni-stuttgart.de\ (C.\ Samanta).$

^{1385-8947/\$ –} see front matter © 2007 Elsevier B.V. All rights reserved. doi:10.1016/j.cej.2007.03.016

has shown great potential. Ceria supported/promoted Pd catalysts are widely use in three-way catalysis [17], catalytic wet oxidation [18], oxidation–combustion catalysts [19] etc. Ceria supported Pd catalyst [4,5,12,13] has also been employed in direct oxidation of H_2 to H_2O_2 by our group and has shown promising results.

Our previous studies [4,13] have shown that oxidation state of palladium can play an important role in determining activity/selectivity of supported Pd catalysts in direct H_2 to H_2O_2 oxidation process. Studies in several patents [20-24] have demonstrated that high selectivity for H₂O₂ formation over the Pd-based catalysts could be achieved in presence Br⁻ or Cl⁻ ions in aqueous reaction medium [20-23] or with brominated Pd catalyst [24]. We also have shown that high H_2O_2 yield/selectivity can be obtained with different Pd catalysts with incorporating Br⁻ ions into Pd catalysts [11] or with introducing Br⁻ or Cl⁻ ions into aqueous acidic reaction medium [12]. It has been found that in presence of hydrogen, H₂O₂ hydrogenation preferentially takes place than H₂O₂ decomposition over Pd catalyst in the presence of Cl⁻ or Br⁻ in acidic reaction medium [12] or in the Pd catalyst [14]. Recently, Strukul and co-workers [15] have investigated the performance of SO₄²⁻. Cl⁻, F⁻ and Br⁻-doped zirconia supported Pd catalysts in the direct H₂O₂ synthesis in methanol reaction medium. They noted that best catalytic results could be obtained with sulfate-doped zirconia catalyst and preferably with Pd° catalysts modified with surface oxidation. Since both Pd oxidation states in the catalyst and halide ions (present in the reaction medium or catalyst) have individual strong influence on direct H₂O₂ synthesis, it is, therefore, both scientific and practical interest to know the cooperative role of Pd oxidation states and different halide ions on the direct H₂O₂ synthesis from H₂ and O₂.

The present work was undertaken with the objective of investigating the influence of different halide ions (viz. F^- , Cl^- , Br^- and I^-) added directly to an aqueous acidic reaction medium or incorporated in the catalyst on the performance of Pd/CeO₂ catalyst in H₂ to H₂O₂ oxidation and H₂O₂ decomposition/hydrogenation reactions. The Influence of Pd loading in Pd/CeO₂ catalyst and concentration of Br^- ions in acidic reaction medium on the H₂ conversion, H₂O₂ yield/selectivity in H₂ to H₂O₂ oxidation and H₂O₂ decomposition reactions have also been investigated.

2. Experimental

2.1. Preparation of oxidized and reduced Pd/CeO₂ catalysts

The CeO₂ (obtained from Aldrich) supported oxidized Pd catalyst was prepared by impregnating CeO₂ with palladium acetate from its acetonitrile solution by the incipient wetness impregnation technique. After impregnation, the wet catalyst mass was dried at 100 °C for 4 h and then calcined under static air in a muffle furnace at 500 °C for 3 h. The reduced Pd/CeO₂ catalyst was obtained from the oxidized Pd/CeO₂ catalyst by reducing it with an ammoniacal hydrazine solution at room temperature (25 °C) for 2 h followed by washing, filtration and drying at 100 °C in an air oven The color of oxidized and reduced catalysts was light brown and gray, respectively. The presence metallic Pd (Pd°) and PdO phases in the reduced and oxidized Pd/CeO₂ catalysts respectively, were confirmed by XRD.

2.2. Modification of reduced Pd/CeO₂ catalyst by its halogenation

The halogenated (viz. fluoride, chloride or bromide containing) Pd/CeO₂ catalyst was prepared by impregnating the reduced Pd/CeO₂ catalyst with the corresponding ammonium halide from its aqueous solution by the incipient wetness impregnation technique, drying at 100 °C for 2 h and then calcining under N₂ (flowing) or air (static or flowing) at 400 °C for 1 h. The ammonium halide impregnated reduced Pd/CeO₂ catalyst calcined in flowing N₂ was found to retain the metallic Pd phase in the catalyst. However, the corresponding ammonium halide impregnated reduced Pd/CeO₂ catalyst calcined in air was found to convert into the oxidized form.

2.3. Catalytic reactions

2.3.1. H_2 to H_2O_2 oxidation

The direct oxidation of H_2 by O_2 to H_2O_2 over the oxidized and reduced Pd/CeO₂ catalysts was carried out at atmospheric pressure (95 kPa) in a magnetically stirred glass reactor (capacity 250 cm³) containing 0.5 g catalyst in a fine power form and an aqueous acidic solution (150 cm³) as a reaction medium. A H_2/O_2 (4.6 mol% H_2) gas mixture was bubbled (using a fine glass tip) continuously through the reaction medium containing the catalyst under vigorous stirring at a constant temperature. The temperature of the reaction was controlled by passing water through the reactor jacket from thermostatic bath. The concentration of unreacted hydrogen present in the effluent gases, after removing the water vapors from them by condensation at 0 °C, was measured by an online hydrogen analyzer (Kathorometer, Nucon, New Delhi) based on a thermal conductivity detector. After the reaction, the solid catalyst was separated by filtration and the filtrate was analyzed for the H₂O₂ formed in the reaction by iodometric titration. The conversion of H₂, H₂O₂ yield and selectivity were obtained as follows:

H₂ conversion(%)

$$(\text{moles of } H_2 \text{ in the feed})$$

$$= \frac{-(\text{moles of } H_2 \text{ in the effluent gases})}{\text{moles of } H_2 \text{ in the feed}} \times 100$$

$$H_2O_2 \text{ yield}(\%) = \frac{\text{moles of } H_2O_2 \text{ formed}}{\text{moles of } H_2 \text{ in the feed}} \times 100$$

$$H_2O_2 \text{ selectivity}(\%) = \frac{\text{moles of } H_2O_2 \text{ formed}}{\text{moles of } H_2 \text{ consumed}} \times 100$$

Unless mentioned otherwise, the conversion/selectivity/yield data reported in this paper has been taken after a reaction time of 3 h. Some of the experiments were repeated and excellent reproducibility ($\pm 5\%$ H₂O₂ yields) was observed for these experiments. The safety in the present work was ensured by using the feed H₂/O₂ closer to the lower flammability limit, so

that the concentration of H_2 in the reactor exit gas was less than 4% and also care was taken to avoid spillage of catalyst on the reactor walls during the reaction.

2.3.2. H_2O_2 decomposition

The H₂O₂ decomposition (in presence of air) over the catalyst was carried out in a magnetically stirred glass reactor (capacity: 250 cm^3) containing 0.2 g catalyst and 150 cm^3 of an aqueous reaction medium, with or without containing acid and/or halide ions, by injecting 1.0 ml of 30% aqueous H₂O₂ solution in the reactor under vigorous stirring and measuring the gas (O₂) liberated in the decomposition of H₂O₂ (H₂O₂ \rightarrow H₂O + 0.5O₂) at 25 °C and atmospheric pressure, as a function of time, using a constant pressure gas collector, for a period of 1 h. The percent H₂O₂ decomposition data was estimated as follows.

H₂O₂ decomposition (%) = $[V_t/V_T] \times 100$ (where, V_t = volume of O₂ evolved in time *t* and V_T = volume of O₂ evolved in the complete decomposition of H₂O₂ in the reactor). The H₂O₂ decomposition activity of the catalyst was evaluated in term of a pseudo first order rate constant (k_d) according to the first order rate expression: $\ln[V_T/(V_T - V_t)] = k_d t$ (where, V_T = volume of O₂ evolved in the complete H₂O₂ decomposition, V_t = volume of O₂ evolved in time *t*). From the slope of the $\ln[V_T/(V_T - V_t)]$ versus *t* plot, pseudo first order H₂O₂ decomposition rate constant (k_d) was evaluated.

2.3.3. H_2O_2 hydrogenation

The H₂O₂ conversion in presence of H₂ (flowing) over the reduced Pd/CeO₂ catalyst was carried out in a magnetically stirred glass reactor (capacity: 250 cm³) containing 0.3 g catalyst and 150 cm³ of an aqueous acidic (0.03 M H₃PO₄) solution, as follows: at first, all the air in reactor was thoroughly flushed by passing pure hydrogen and then hydrogen gas was bubbled (at a flow rate of 30 cm³/min) through the reaction medium. After that, 3.0 ml of 30% aqueous H₂O₂ solution was injected into the reactor under vigorous stirring and the gas consumed in hydrogenation (H₂O₂ + H₂ \rightarrow 2H₂O) or evolved in decomposition (H₂O₂ \rightarrow H₂O + 0.5O₂) was measured as a function of time, using a constant pressure gas collector.

3. Results and discussion

3.1. Influence of halide ions added to reaction medium

Results showing the influence of different halide ions added to aqueous acidic $(0.03 \text{ M H}_3\text{PO}_4)$ reaction medium on the performance of oxidized and reduced Pd/CeO₂ catalysts in direct oxidation of H₂ to H₂O₂ are presented in Fig. 1. The halides were introduced in the reaction medium as potassium halides. The results in Fig. 2 show the influence of different halide ions added to the acidic $(0.03 \text{ M H}_3\text{PO}_4)$ reaction medium on H₂O₂ decomposition rate over oxidized and reduced Pd/CeO₂ catalysts. The results obtained from H₂O₂ destruction under flowing hydrogen over reduced Pd/CeO₂ catalyst in acidic $(0.03 \text{ M H}_3\text{PO}_4)$ reaction medium with or without containing different halide ions are presented in Fig. 3.

- reduced catalyst - oxidized catalyst Halide added to the reaction medium I Br CI None 0 10 20 30 40 50 60 0 15 20 25 0 15 30 45 60 5 10 X_{H.} (%) Y_{H,O}(%) S_{H,O}(%)

Fig. 1. Performance of oxidized and reduced Pd (2.5%)/CeO₂ catalysts in the direct H₂ to H₂O₂ oxidation in an acidic (0.03 M H₃PO₄) medium in the absence and presence of different potassium halides (concentration of halide = 0.94 mmol/dm^3) [X, Y and S are conversion, yield and selectivity, respectively].

In the absence of any externally added halide ions to the reaction medium, the reduced Pd/CeO₂ catalyst exhibited higher activity for both H_2 conversion and H_2O_2 decomposition, but lower selectivity for H_2O_2 formation as compared to its oxidized counterpart (Fig. 1). Thus, under the halide-free

Fig. 2. Effect of different potassium halides (concentration = 0.94 mmol/dm^3) added to aqueous acidic ($0.03 \text{ M} \text{ H}_3\text{PO}_4$) medium on the H_2O_2 decomposition (at 25 °C) over (a) reduced (b) and oxidized Pd (2.5%)/CeO₂ catalysts [Potassium halide in the reaction medium: none (\bigcirc), KF (\triangle), KCl (\bigtriangledown), KBr (\square), KI (\times)].

Fig. 3. Effect of different halides (concentration = 0.94 mmol/dm^3) added to aqueous acidic ($0.03 \text{ M} \text{ H}_3\text{PO}_4$) medium on the rate of H_2O_2 destruction under flowing H_2 over the reduced Pd (2.5%)/CeO₂ catalyst (at 25 °C).

condition, bulk oxidation states of Pd in the catalyst mostly control the activity/selectivity of the catalysts in the H₂ to H_2O_2 oxidation (Fig. 1) and H_2O_2 decomposition rate (Fig. 2). When halide ions were introduced in the reaction medium, a significant change in the performance of Pd/CeO₂ catalyst in the H₂ to H₂O₂ oxidation was observed. While H₂ conversion and H_2O_2 decomposition over the reduced and oxidized catalysts increased due to presence of F⁻ ions in the reaction medium, the presence of I^- ions caused a drastic reduction in the H₂ conversion and H₂O₂ decomposition over the catalysts. The strong poisoning effect of I⁻ is essentially due to its strong coordinating ability to Pd. The fluoride ion, on the other hand, is not effective (weak coordinating ligand) in suppressing the H₂O₂ decomposition. The H₂O₂ hydrogenation activity also increased due to the presence of F⁻ ions in the reaction medium (Fig. 3). The observed increase in the H_2 conversion and H_2O_2 hydrogenation in the presence of F^- ions in the reaction medium, is attributed to the adsorption of strong electronegative species (viz. F^{-} ions), which are expected to make the Pd surface more electron deficient and, thereby facilitating the adsorption of hydrogen. However, the addition of other halide ions (viz. I^- , Br^- or Cl^-) to the reaction medium decreased both the H₂ conversion and H₂O₂ decomposition/hydrogenation activities of the catalyst, indicating that the adsorption of these halide ions caused in blocking/poisoning of catalytic active sites. Here, it may be noted that with reduced Pd/CeO2 catalyst, in absence of any halides or even in the presence of F⁻ ions in the reaction medium, H₂O₂ destruction under flowing H₂ proceeded via hydrogenation rather than decomposition; only gas (H₂) consumption and no gas evolution (from H_2O_2 decomposition) was observed, unlike in the case of previously studied H2O2 destruction over Pd/C and Pd/Al₂O₃ catalysts [12]. This observation indicates that the nature of the support employed in Pd catalyst plays an important role in determining H₂O₂ destruction pathway under H₂. The much higher H₂O₂ decomposition activity for the reduced catalyst as compared to its oxidized counterpart might be related to the higher propensity for H_2O_2 adsorption

on reduced Pd sites. It may be noted that, because of lower pH of the reaction medium than isoelectric point of the catalyst support (CeO₂), only halide ions (not cations associated with halide ions) from the reaction medium are expected to be adsorbed on the catalyst. Therefore, the cations should have only a little or no influence on the H₂O₂ formation and decomposition reactions. H₂O₂, having a strong oxidizing ability in acidic medium, can oxidize halide ions (except F^- ions) present in the reaction medium was found to get oxidized (by H₂O₂) to I₂ during the reaction over Pd catalysts [26]. Thus, optimum amount of halide ion should be added to reaction medium to avoid halide-promoted degradation of H₂O₂ formed in the reaction.

The selectivity for H2O2 formation would increase when H2 combustion to water (H₂ + $0.5O_2 \rightarrow H_2O$), and H₂O₂ decomposition and hydrogenation in consecutive reactions are completely and/or partially inhibited. The presence of Br⁻ or Cl⁻ ions in the reaction medium appreciably improved H₂O₂ yield/selectivity over both the oxidized and reduced catalysts; the increase of the H₂O₂ yield was more significant for the reduced catalyst. Thus, both the oxidation state of palladium in the catalyst and the nature of the halide ions (added to the reaction medium) cooperatively control activity/selectivity of the catalysts. Brwas found more effective than Cl⁻ (on a same molar basis) in promoting H_2O_2 forming reaction. The H_2O_2 decomposition (Fig. 2) and hydrogenation (Fig. 3) activities also decreased due to the presence of Br^{-} (or Cl^{-}) ions. The non-selective H₂ to water oxidation over the catalysts is also expected to be significantly reduced due to the presence of Br⁻ (or Cl⁻) ions; however, there is no direct evidence on it. The observed increase in H₂O₂ yield/selectivity in the presence of Br⁻ ions in the reaction medium may be attributed to the adsorption from reaction medium of Br⁻ ions on the catalyst. The adsorption of Br⁻ ions probably lead to blocking/poisoning of catalytic sites and electronic modification of Pd centers, resulting in inhibition for both the H₂ combustion and consecutive H₂O₂ destruction over the catalyst. In our earlier study on Pd/Al₂O₃ catalyst, we have concluded from XPS study that adsorbed Br⁻ ions are either close to the Pd particles in the catalyst (particularly at the metal-support interface) or mobile on the catalyst during the reaction to have their interaction with the Pd [12]. The color of the catalysts (oxidized and reduced) was found unchanged after the reaction, indicating that there was no significant change in the bulk oxidation state of palladium in the catalyst during the reaction. The reason might be of the low H₂ concentration (4.6 mol% H_2 in O_2) in the gaseous feed employed in the H₂O₂ synthesis. The solubility of H₂ in aqueous medium is quite low and therefore, it is expected that the concentration of dissolved H₂ in the reaction medium would be too low to completely reduce PdO in the catalyst. However, a change in the oxidation state of surface/sub-surface Pd in the catalyst is expected to take place during the reaction. A modification of the surface/sub-surface oxidation state of palladium in Pd/C catalyst (with different pretreatments to the catalyst) has been found to strongly influence H2O2 decomposition; the reductive pretreatment to the catalyst was found to increase H_2O_2 decomposition, while the oxidative pretreatment led to decrease Table 1

Performances of the different halides impregnated reduced Pd (2.5 wt.%)/CeO₂ catalyst calcined under different gaseous atmospheres in the H₂ to H₂O₂ oxidation and H₂O₂ decomposition reactions in an aqueous acidic ($0.03 \text{ M} \text{ H}_3\text{PO}_4$) reaction medium (at $25 \degree \text{C}$) (concentration of halide = 1.0 wt.%)

Halide incorporated in catalyst	Form of Pd $(Pd^{\circ} \text{ or } PdO)^a$	H ₂ to H ₂ O ₂ oxidation			H ₂ O ₂ decomposition activity
		$\overline{X(\mathrm{H}_2)(\%)}$	$Y(\mathrm{H}_{2}\mathrm{O}_{2})(\%)$	$S(\mathrm{H}_2\mathrm{O}_2)(\%)$	$k_{\rm d} \times 10^4 \ ({\rm min}^{-1})^{\rm b}$
None	Pd°	51.8	6.9	13.6	40.3
Halogenated catalyst calcined in f	owing N ₂ at 400 °C				
F ⁻	Pd°	46.4	15.4	33.2	3.5
Cl ⁻	\mathbf{Pd}°	42.7	19.1	44.6	2.4
Br ⁻	Pd°	35.6	19.5	54.8	1.4
Halogenated catalyst calcined in s	tatic air at 400 °C				
F ⁻	PdO	27.3	8.9	32.7	1.6
Cl-	PdO	31.3	10.9	34.8	1.7
Br ⁻	PdO	31.5	17.5	55.5	2.1
Halogenated catalyst calcined in f	owing air at 400 °C				
F ⁻	PdO	31.5	10.9	34.6	3.2
Cl-	PdO	27.4	11.5	41.9	2.1
Br ⁻	PdO	33.8	17.1	50.6	2.1

X, Y and S = conversion, yield and selectivity, respectively.

^a Confirmed by XRD.

^b Pseudo first order H₂O₂ decomposition rate constant (at 25 °C).

in H_2O_2 decomposition activity [25]. Palladium leaching from the catalyst in reaction medium was not observed in the absence or presence of different halide ions under the mild acidic (0.03 M H_3PO_4) reaction medium employed in this study. The problem of palladium leaching in the aqueous acidic medium could be avoided with using a less corrosive acidic solution and preferentially at lower acid concentration. Our earlier study [11] has shown that phosphoric acid (H_3PO_4) is one of the best oxoacids could be used as a reaction medium for miniming palladium leaching from the catalyst even in the presence of Cl^- or $Br^$ anions.

3.2. Influence of halide ions incorporated in the catalyst

Since reduced Pd/CeO₂ catalyst exhibited much higher H_2 conversion than its oxidized counterpart, further studies have been made with the reduced catalyst. The performance of different halides incorporated Pd (2.5%)/CeO₂ catalyst in the H_2 to H_2O_2 oxidation and H_2O_2 decomposition are shown in Table 1.

The strong cooperative influence of halide ions and Pd oxidation state in the catalyst on the H_2 to H_2O_2 oxidation and H_2O_2 decomposition was supported by the following observations:

- The F⁻ or Cl⁻ or Br⁻ impregnated catalyst pretreated (calcined) under flowing N₂ showed much higher H₂ conversion activity as compared to the corresponding catalyst pretreated under air (flowing or static).
- The increase in H₂O₂ yield/selectivity was more for F⁻ or Cl⁻ or Br⁻ incorporated catalyst when calcined under flowing N₂ as compared to the corresponding catalysts calcined under air (staic or flowing).
- The selectivity for H₂O₂ formation was significantly improved due to Br⁻-modification of the catalyst, irrespective of the pretreatment conditions. The H₂ conversion and H₂O₂ decomposition activities of the catalyst were reduced due to

the Br⁻-modification of the catalyst; the decrease in the latter was more significant.

• The halides incorporated catalysts calcined under static air showed very similar catalytic performance in the H₂ to H₂O₂ oxidation and H₂O₂ decomposition reactions as compared to the corresponding catalysts calcined under flowing air.

The H₂O₂ yield/selectivity was increased after F⁻ or Cl⁻ or Br⁻ -modification of the catalyst under flowing N₂. However, in comparison to the PdO/CeO2 catalyst (Fig. 1), NH4F or NH4Cl impregnated Pd°/CeO₂ (reduced) catalyst calcined in static or flowing air did not produce better H2O2 yield/selectivity. Our previous study [11] has shown that fluorinated or chlorinated Pd/Al₂O₃, Pd/ZrO₂, Pd/SiO₂ catalysts (in their reduced state) calcined under flowing N2 were highly active for water formation in the H₂/O₂ reaction. However, with the fluorinated or chlorinated reduced Pd/CeO2 catalyst (pretreated in flowing N2), an appreciable H₂O₂ yield/selectivity was obtained in the direct H₂O₂ synthesis. This indicates that support plays an important role in Pd-halide interaction in the catalyst. Interestingly, Br-containing Pd/CeO₂ catalyst calcined under either nitrogen or air (static or flowing) showed high selectivity for H₂O₂ formation and low H₂O₂ decomposition activity. Thus, Br⁻ has greater contribution in controlling activity/selectivity of Br⁻ Pdo/PdO couple system than oxidation state of Pd. The presence of Brions either in the reaction medium (Fig. 1) or catalyst (Table 1) was found to promote the selectively for H₂O₂ formation to a similar magnitude, which indicates that Br⁻ ions added to the reaction medium were eventually adsorbed on the catalyst. The essential role of Br⁻ is to inhibit the formation of OH radicals from H₂O₂, which is the primary reaction responsible for H₂O₂ destruction because of the lower energy required for the cleavage of HO–OH bond (213 kJ/mol), as compared to that (369 kJ/mol) required for the cleavage of H-O₂H bond and also to inhibit the direct H₂ to water oxidation over the catalyst. It may be

noted that during thermal pretreatment (at 400 °C) of the different ammonium halides (NH₄F, NH₄Cl and NH₄Br) impregnated Pd/CeO₂ catalyst under gaseous atmosphere, ammonium halides were decomposes into ammonia and corresponding hydrogen halides (NH₄ X \rightarrow NH₃ + HX, where X = F, Cl or Br). Thus, the improvement in H₂O₂ selectivity was essentially due to the halide ions. However, influence of the counter cations on the H₂ to H₂O₂ oxidation has been observed for Pd/Al₂O₃ catalyst when different bromide precursors (viz. KBr, NaBr, HBr) employed in the Br⁻-modification of the catalyst [26].

3.3. Effect of Pd loading

Results showing the influence of Pd loading in the reduced Pd/CeO₂ catalyst on its performance in H₂ to H₂O₂ oxidation and H₂O₂ decomposition reactions in acidic (0.03 M H₃PO₄) medium in absence of any halide and in presence of Br⁻ ions are presented in Figs. 4 and 5, respectively. Under the halide-free condition, H₂ conversion and H₂O₂ decomposition activities of the catalyst increased with increasing Pd loading in the catalyst, but H₂O₂ selectivity passed through a maximum (Fig. 4). The increase of Pd loading in the catalyst also caused an increase in H₂O₂ decomposition activity of the catalyst and consequently, H₂O₂ yield was decreased.

With bromide-containing reaction medium (Fig. 5), the H_2O_2 yield increased with increasing Pd loading from 0.5 to 1.0 wt%, but remained almost constant when Pd loading was increased from 1 to 2.5 wt%. In this case also, H_2 conversion and H_2O_2

Fig. 4. Effect of Pd loading in the reduced Pd/CeO₂ catalyst on its performance in the (a) H_2 to H_2O_2 oxidation and (b) H_2O_2 decomposition in aqueous acidic (0.03 M H_3PO_4) medium (at 25 °C).

Fig. 5. Effect of Pd loading in the reduced Pd/CeO₂ catalyst on its performance in the (a) H₂ to H₂O₂ oxidation (b) and H₂O₂ decomposition in aqueous acidic (0.03 M H₃PO₄) medium containing Br⁻ ions (0.94 mmol/dm³) (at 25 °C).

decomposition activities of the catalyst increased with increasing Pd loading in the catalyst. However, the H_2O_2 selectivity increased and then passed through a maximum with increasing Pd loading in the catalyst. Park and co-workers [27] have also shown that amount of H_2O_2 produced was increased sensitively with increasing Pd loading up to optimum value and subsequently decreased slightly when Pd loading was further increased. The observed influence of Pd loading on the H_2O_2 formation and H_2O_2 decomposition may be attributed to the increase in Pd surface and/or particle size. Further detailed investigation is necessary for understanding the Pd loading effect.

3.4. Influence of bromide concentration

Since Br^- was found the most effective catalyst promoter for the selective oxidation of H_2 to H_2O_2 , the effect of Br^- concentration in the reaction medium on H_2O_2 yield/selectivity was studied further. The H_2O_2 yield in H_2 to H_2O_2 oxidation sharply increased (particularly at the lower Br^- concentrations) and then passed through a maximum with increasing Br^- concentration in the reaction medium (Fig. 6). However, H_2 conversion and H_2O_2 decomposition over the catalyst decreased continuously with increasing Br^- concentration in the reaction medium. Thus, an optimum concentration of Br^- in the reaction medium is essential for achieving the maximum H_2O_2 yield in the reaction under the investigated experimental conditions. The observed lower H_2 conversion and H_2O_2 decomposition rate over the catalyst at

Fig. 6. Effect of Br⁻ concentration in an aqueous acidic (0.03 M H₃PO₄) medium on the H₂ conversion, H₂O₂ yield, H₂O₂ selectivity in the H₂ to H₂O₂ oxidation (a) and H₂O₂ decomposition (b) over the reduced Pd (1%)/CeO₂ catalyst (at 25 °C).

higher Br⁻ concentration is probably due to poisoning/blockage of more catalytic active sites.

4. Concluding remarks

- 1. Under halide-free condition, the bulk oxidation states of Pd in the catalysts mostly control the activity/selectivity of catalyst in H_2 to H_2O_2 oxidation and the rate of H_2O_2 decomposition while with halide-containing system, both the oxidation state of Pd in the catalyst and the nature of the halide ions (added to the reaction medium or incorporated into the catalyst) cooperatively control the activity/selectivity of the catalyst.
- 2. In the absence of any externally added halide ions to the reaction medium, reduced catalyst exhibited much higher activity for both H_2 conversion and H_2O_2 decomposition but much lower selectivity for H_2O_2 formation as compared to its oxidized counterpart.
- 3. In the presence of F^- ions in the reaction medium, the reduced Pd/CeO₂ catalyst led to low H₂O₂ formation due to its increased H₂O₂ decomposition activity. However, the corresponding PdO-containing catalyst had higher H₂O₂ formation selectivity.
- 4. The H₂O₂ yield was increased significantly for both the oxidized and reduced Pd/CeO₂ catalysts due to the presence of Br⁻ ions in acidic reaction medium; the increase was particularly significant for reduced catalyst. Cl⁻ also promoted H₂O₂ formation selectivity but it was found less effective (on a molar basis) than Br⁻. Br⁻ was found unique in promot-

ing the H_2O_2 selectivity, irrespective of Pd oxidation state in catalyst. An optimum concentration of Br^- ions in the acidic reaction medium or in the catalyst was important for obtaining maximum H_2O_2 yield in H_2 to H_2O_2 oxidation.

- 5. Both H_2O_2 decomposition and hydrogenation activities of reduced catalyst were inhibited due to presence of Cl⁻, Br and I⁻ ions, but F⁻ ions promoted the activity for H_2O_2 decomposition/hydrogenation. At the same halide concentration, poisoning/blocking effect of I⁻ was found highest among the halides. The effectivity of different halides on the H_2O_2 decomposition/hydrogenation was in the following the order (highest to least): I>Br>Cl>F.
- 6. H₂ conversion and H₂O₂ decomposition activities of the catalyst increased with increasing Pd loading in the catalyst under both the halide-free and bromide-containing reaction mediums. The H₂O₂ selectivity in H₂ to H₂O₂ oxidation, however, passed through a maximum with increasing Pd loading in the catalyst.

References

- W.T. Hess, in: J.K. Kroschwitz, M. Howe-Grant (Eds.), Kirk-Othmer Encyclopedia of Chemical Technology, vol. 13, fourth ed., Wiley, New York, 1995, pp. 961–995.
- [2] V.R. Choudhary, A.G. Gaikwad, S.D. Sansare, Angew. Chem. Int. Ed. 40 (2001) 1776.
- [3] V.R. Choudhary, S.D. Sansare, A.G. Gaikwad, Catal. Lett. 84 (2002) 81.
- [4] A.G. Gaikwad, S.D. Sansare, V.R. Choudhary, J. Mol. Catal. A Chem. 181 (2002) 143.
- [5] V.R. Choudhary, A.G. Gaikwad, S.D. Sansare, Catal. Lett. 83 (2002) 235.
- [6] D.P. Dissanayake, J.H. Lunsford, J. Catal. 214 (2003) 113.
- [7] P. Landon, P.J. Collier, A.F. Carley, D. Chadwick, A. Burrows, A.J. Papworth, A. Burrows, C.J. Kiely, G.J. Hutchings, Phys. Chem. Chem. Phys. 5 (2003) 1917.
- [8] R. Burch, P.R. Ellis, Appl. Catal. B Environ. 42 (2003) 203.
- [9] S. Chinta, J.H. Lunsford, J. Catal. 225 (2004) 249.
- [10] Y.-, F. Han, J.H. Lunsford, J. Catal. 230 (2005) 313.
- [11] V.R. Choudhary, C. Samanta, A.G. Gaikwad, Chem. Commun. (2004) 2054.
- [12] V.R. Choudhary, C. Samanta, J. Catal. 238 (2006) 28.
- [13] V.R. Choudhary, C. Samanta, T.V. Choudhary, Appl. Catal. A Gen. 308 (2006) 128.
- [14] S. Melada, F. Pinna, G. Strukul, S. Perathoner, G. Centi, J. Catal. 235 (2005) 241.
- [15] S. Melada, R. Riccardo, F. Menegazzo, F. Pinna, G. Strukul, J. Catal. 239 (2006) 422.
- [16] C. Samanta, V.R. Choudhary, Catal. Commun. 8 (2007) 73.
- [17] J. Kaspar, P. Fornasiero, M. Graziani, Catal. Today 50 (1999) 285.
- [18] J. Barbier Jr., L. Oliviero, B. Renard, D. Duprez, Catal. Today 75 (2002) 29.
- [19] F. Mariño, C. Descorme, D. Duprez, Appl. Catal. B Environ. 54 (2004) 59.
- [20] L.W. Gosser (Du Pont), US Patent 4,681,751(1987); 4,889,705 (1989).
- [21] L.W. Gosser, J.A.T. Schwartz (Du Pont), US Patent 4,772,458 (1988); 4,832,938 (1989).
- [22] L.W. Gosser, M.A. Paoli (Du Pont), US Patent 5,135,731 (1992).
- [23] K.T. Chuang, B. Zhou (EKA Nobel AB), US Patent 5,846,898 (1998).
- [24] Y. Hiramatsu, Y. Ishiuchi, H. Nagashima, US Patent, 5,132,099 (1992).
- [25] V.R. Choudhary, C. Samanta, T.V. Choudhary, J. Mol. Catal. A Chem. 260 (2006) 115.
- [26] C. Samanta, Direct oxidation of hydrogen to hydrogen peroxide, Ph.D. Thesis, University of Pune, Pune, India, 2004.
- [27] S.E. Park, L. Huang, C.W. Lee, J.S. Chang, Catal. Today 61 (2000) 117.